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Abstract

This article sheds light on the drivers of decarbonization in the cross-section of global
publicly-listed firms. We find that reported and estimated emissions depend on very
different sets of variables. With respect to reported footprint, biodiversity loss, R&D ex-
penditures and institutional ownership matter the most. In terms of predictive accuracy,
we find that sophisticated models based on panel data do not best simple benchmarks
and that linear extrapolation is not the best alternative. Moreover, we report marked
difference in forecasting errors across sectors, with utilities being the easiest to predict
and information technology the hardest. All in all, our findings deliver insights to asset
managers seeking net-zero targets.

1 Introduction & Motivation

1.1 Context

Latest scientific consensus shows that the Earth is already about 1.1°C warmer than it was in
the late 1800s, and emissions continue to rise. Hence, the multiple threats posed by climate
change call for a steady decarbonization of economic systems worldwide.1 To avoid the
worst consequences of climate change and achieve the ambition of the Paris Agreement to
limit global warming below 1.5°C, Greenhouse gas (GHG) emissions need to drop by 45%
by 2030 and ultimately reach net zero by 2050.

The financial industry may play an critial role in this regard, and investors are increas-
ingly conscious and proactive on the matter (Krueger et al. (2020) and Bolton and Kacperczyk
(2021)). For instance, in 2024, more than 300 institutions representing $60T of assets under
management (AUM) had already joined the Net Zero Asset Managers initiative.
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damages.
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Both academics and practitioners have proposed avenues to reach so-called “Net Zero”
targets.2 Nevertheless, in all cases, a crucial input of such approaches is the measurement
and reporting of current emissions and a credible assessment of their trajectories in the fu-
ture. However, accessing current GHG emissions and trajectories accurately is challenging
for investors.

Indeed, regulations requiring GHG disclosure varies around the world in their scope and
accounting standards.

For example, The European Union implemented the Corporate Sustainability Reporting
Directive (CSRD) in 2023, which requires companies operating in Europe to disclose their
emissions beginning in 2025. It directly references the GHG Protocol’s standards and is ex-
pected to impact over 50,000 companies across the European Union. Another example is
California’s Climate Disclosure Accountability Act from the same year. It requires compa-
nies with over $1 billion in revenues that operate in California to publicly disclose their scope
1 and 2 emissions starting in 2026, and their scope 3 emissions starting in 2027. At the fed-
eral level, the U.S. Securities and Exchange Commission (SEC) finalized a rule in March 2024
that will require companies to disclose some of their emissions if they’re deemed financially
material to investors. Overall, according to the World Resources Institute, just a handful of
countries have mandatory GHG disclosure regulations.

This lack of reported data makes it difficult to accurately evaluate corporates GHG emis-
sions at a large scale and therefore limit investors’ ability to integrate this dimension in a
consistent way into their investment decisions. Data providers have long developed esti-
mation models to fill these gaps. However, transparency in modeling approaches and their
accuracy remain limited in the industry. In continuation with the literature surrounding ESG
scores discrepancies (Berg et al., 2022; Dimson et al., 2020) recent studies have documented
the discrepancies among GHG data. Busch et al. (2022); Kalesnik et al. (2022); Papadopoulos
(2022) compare several data providers and show that while correlations on reported direct
emissions (Scope 1) are strong, around 0.97%, they tend to collapse for modeled indirect
emissions (Scopes 2 and 3). This is of high importance since, the average disclosure level
for the FTSE World was 58% in 20233. Fortunately, Swinkels and Markwat (2023) find some
improvements in recent years, especially for Scopes 1 and 2, with increasing homogeneity in
reported data.

Yet, properly estimating current GHG emissions is only the first step to achieve net zero
alignment. In addition, companies need to engage in an ambitious transition plans to reduce
their GHG emissions. To this end, as summarized by the Transition Plan Taskforce (TPT) in
its "Disclosure Framework"4, a triptych is required: Ambition, Actions and Accountability.
For investors to accurately assess transition risk and properly support this radical business
changeover through efficient capital allocation, robust future emissions forecasts are key.

However, data providers and a current research on the topic still rely on relatively sim-
ple models to predict forward levels of GHG emissions. These predictions are usually sim-
ple extrapolation from recent trends at the company (Le Guenedal et al., 2022) or portfolio
(Le Guenedal and Roncalli, 2022) level. Obviously, the outcome is suboptimal as these ap-

2A non-exhaustive list is: Barahhou et al. (2022), Bolton et al. (2022), Le Guenedal et al. (2022), Le Guenedal
and Roncalli (2022), Cenedese et al. (2023), Fraser and Fiedler (2023) and Roncalli (2024).

3"FTSE: Mind the gaps: Clarifying corporate carbon (2023)
4Summary of the TPT Recommendations
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proaches do not take into account publicly available information, such as pledges, targets
(e.g. Science-Based Targets) or transition plans (e.g. TPT). In addition, according to Kalesnik
et al. (2022), current forward-looking carbon scores from different data providers have very
limited power in predicting future changes in emissions. The authors’ findings suggest that
estimated emissions are at least 2.4 times less effective than self-reported emissions to predict
future pathways. Moreover, a recent exploratory study from Aldy et al. (2023) reveal how
short terms commitments are only marginally met and emphasize on the difficulties of high
emitting companies to meet their targets. They suggest that over-promising and unrealistic
targets are the main issue toward a greater rate of success.

Therefore, building realistic, robust and transparent systematic approaches to accurately
predict future GHG emissions at the corporate level is critical to achieve the world’s climate
ambitions as set in the Paris agreement.

The present article seeks to propose a data-based approach to determine the drivers of
decarbonization in the cross-section of firms. To do so, we compile a large sample of firms
worldwide, where each company is characterized by a large array of indicators, ranging from
accounting ratios, to balance sheet composition, ESG scores, and greenhouse gas emissions.

1.2 Related literature

The present article sits at the confluence of several streams of academic research. First, there
is an emerging research on firms’ specific drivers of sustainable policies in general and GHG
emissions reduction in particular where current results show contradicting findings. In the
more general case of environmental, social and governance (ESG) performance, we point to
the recent survey by Martiny et al. (2024). They emphasize the positive association between
the proportion of ownership linked to socially responsible investors and future corporate so-
cial responsibility (CSR) scores (Hwang et al., 2022). Likewise, Kahn et al. (2023) find a simi-
lar outcome for GHG emissions. Regarding debt financing, Flammer (2021) show that green
bonds’ issuers reduce their GHG emissions post-issuance, while Zerbib (2019) estimates a
positive impact on the cost of capital, reducing the cost of the transition. On another dimen-
sion, Lee and Min (2015) and Habiba et al. (2022) point out that green R&D and innovations
are associated with lower emissions. Nevertheless, other contributions nuance the influence
of ownership structure, financial flows, and financing costs. Atta-Darkua et al. (2023) argue
that the real impact of sustainable investors is marginal with regard to the green transition.
Moreover, Berk and Van Binsbergen (2024) show that in contradiction with theoretical find-
ings suggesting that sustainable investing may produce positive impact by making firms
greener (Pástor et al., 2021), based on current data, the influence of divesting on the cost
of capital is too low to meaningfully affect real investment decisions. Also, Feldhütter and
Pedersen (2023) propose a theoretical model implying that firm incentives to make green in-
vestments do not depend on their financing choice (debt versus equity). These findings are
further supported by Heath et al. (2023) and Lam and Wurgler (2024). While the first shows
that SRI funds do not significantly change firm behavior, the latter emphasize that only 2%
of corporate green bond proceeds support projects with new green features.

Besides, some studies look beyond correlation and aim to assess the causality of sustain-
able policies on firms’ decisions. From a theoretical perspective, Acharya et al. (2023) lay
out a model on the impact of carbon taxes and green subsidies on firm’s willingness to in-
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vest in decarbonization technologies. The model predicts that large firms (or conglomerates)
can benefit from investing in green technologies and lead the way towards decarboniza-
tion. Furthermore, Pedersen (2024) also shows that carbon prices are the most efficient tools
to optimize social welfare (aggregate consumption minus disutility from pollution). Em-
pirically, Adamolekun (2024) confirms that carbon pricing in the European Union reduces
corporate emissions. In fact, Leffel et al. (2024) contend that state-level climate policies (e.g.,
financial incentives for energy efficiency) matter more for decarbonization than corporate
decarbonization initiatives. In a more descriptive way, Aldy et al. (2023) study the determi-
nants of corporate carbon pledges and achievement. They show that companies ability to
succeed depends on the length of the carbon pledge, the overall level of emissions, and each
company’s sales growth.

Moreover, a few papers tackle the challenging exercise of ESG scores or GHG emissions
forecasting based on statistical tools. Goldhammer et al. (2017) where the first to introduce a
set of companies’ data and they suggested Ordinary Least Squares (OLS) and Gamma Gen-
eralized Linear Regression (GGLR) to model GHG emissions forecasts. They achieve higher
match with reported data compared to simple extrapolation, but for a very limited set of
European companies. Nguyen et al. (2021) updated the approach with the help of machine
learning techniques to improve accuracy. They build a meta-learner that relies on the op-
timal set of predictors from different base models, including OLS, penalized regressions,
neural networks, trees and clustering techniques. Their significantly improve in and out-of-
sample accuracy. Nevertheless, they highlighted limitations in disentangling between direct
and indirect emissions in their predictions, as well as discrepancies between industries. For
instance, the average R2 for most polluting industries in direct emissions (Scope 1) barley
reaches 50%. Recently, Michalski and Low (2024) applied a similar approach to predict ESG
scores. Pastor et al. (2024) also released a study of sectors’ "carbon burden", computing the
present value of future carbon emissions at sector levels, and thereby trying to quantify the
social externality arising from damages caused by corporate emissions of greenhouse gases.
Doing so, they find that firms’ emissions are predictable by past emissions, investment, cli-
mate score, and book-to-market.

Finally, we relate to a more mature research field studying the drivers of decarboniza-
tion at the macro-economic level. While most analysis tend to focus a specific country at a
time, we rather refer to those that take a panel approach and consider groups of countries.
Several key variables stand out in this literature, such as trade openness and its variations
(Coskuner et al., 2020; Dogan and Seker, 2016b; Nguyen et al., 2021; Sharma, 2011). Other
natural predictors include GDP per capita (Coskuner et al., 2020; Sharma, 2011), economic
growth (Nguyen et al., 2021), energy consumption5 (Coskuner et al., 2020; Dogan and Seker,
2016b; Sharma, 2011), environmental policies (Puertas and Marti, 2021), and financial devel-
opment (Dogan and Seker, 2016b).

1.3 Summary of contributions

In the following paper, we contribute to the aforementioned literature through several ways.
First, we explore the traits of firms undergoing decarbonization. One key finding is the sig-

5In fact, Dogan and Seker (2016a) and Jiang and Guan (2016) show that the share of fossil fuels (versus
renewables) in total energy consumption is a key driver.
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nificant gap between reported emissions and those estimated by data providers. According
to our results, reported emissions largely rely on accounting data, while little consideration
is given to pledges like those from the SBTI, which is surprising.

Another major insight from our results is that complex nonlinear models using panel data
do not consistently outperform simpler methods. Additionally, extrapolation proves to be
an unreliable benchmark due to the possibility of reversals in corporate emission strategies.

When it comes to identifying key variables for decarbonization, no clear narrative emerges.
Both sustainability-linked factors, such as biodiversity footprint, and more conventional fi-
nancial metrics, including historical returns and the book-to-market ratio, play a role. More-
over, analysts’ sentiment and macroeconomic indicators frequently contribute to explaining
carbon trends.

Our classification analysis also indicates that broader industry trends influence model
performance. Specifically, the overall proportion of decarbonizing firms is closely linked to
the accuracy of our models.

Lastly, we observe variations in prediction errors across different industries. Certain
sectors, like utilities, are easier to predict, whereas others, such as information technology,
present greater challenges. For sectors with high carbon impact—such as industrials, mate-
rials, energy, and real estate—the forecasting difficulty lies somewhere in between, making
their emission trends neither straightforward nor highly unpredictable.

2 Data

2.1 Sources and construction

We collect carbon emission footprints under scopes 1, 2 and 3 for listed equities worldwide,
covering a broad universe of developed and emerging markets for a period spanning from
2015 to 2022. We rely on ISS data as they are one of the mainstream provider and they
gathered a very large database of both reported and estimated emissions. We compute our
own estimate of GHG emissions intensities by scaling raw emissions with Enterprise Value
Including Cash (EVIC) that we obtain from Bloomberg. This approach has become standard
in the industries as well as academic research on the topic. Table 7 of the appendix displays
the name, source and definition of each variable.

Our panel sample covers 6456 unique companies over the period across four regions
(North America, Europe, Japan and Asia ex Japan). As shown in Figure 1, North America
dominates in terms of number of companies and total market capitalisation, followed by
Europe and Asia. We also observe a significant bias toward small size companies, reflecting
the true nature of financial markets (See Table 1 for more details).

Finally, companies reporting on GHG emissions increase over time, ranging from 40%
to 70% in the latest year. Surprisingly, while these companies are larger in terms of market
capitalisation than the one not disclosing, we also observe a similar proportions in terms of
total amount of GHG emissions, as the reported data account for roughly 40% of total GHG
emissions in our dataset for the first year to more than 70% in 2022. Figure 2 summarize this
finding over time.

We further identify a broad list of candidate drivers of firms’ decarbonization based on
the literature. For clarity, we grouped them in the following categories.
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Figure 1: Share of total market capitalisation by region and year

Region min 10% 50% mean 90% max
North America 20.00 562.00 3.39 × 103 1.69 × 104 3.34 × 104 2.35 × 106

Europe 32.00 354.00 2.19 × 103 9.46 × 103 2.39 × 104 3.74 × 105

Japan 78.00 576.00 2.55 × 103 6.83 × 103 1.67 × 104 2.72 × 105

Asia Ex Japan 19.00 504.00 2.85 × 103 8.69 × 103 1.79 × 104 6.79 × 105

Rest of World 48.00 520.00 2.58 × 103 7.00 × 103 1.40 × 104 1.60 × 105

Table 1: Companies market capitalisation (Million USD)

Sustainability Indicators. First, we identify the firms’ ESG profile as indicative of their
awareness toward climate-related issues and ability to conduct change. Hence, we gather
E,S and G scores separately from ISS and Refinitiv. In addition, because climate change and
biodiversity crisis are deeply intertwined, we leverage on Iceberg-Datalab to include corpo-
rates biodiversity footprint (CBF) as a proxy of the firms’ impact on biodiversity. Finally, we
include firms’ GHG reduction targets reported by the Science Based Target initiative (SBTi).
The usefulness of those targets is supported by the evidence of Bolton and Kacperczyk (2023)
and Ramadorai and Zeni (2024), who find that firms that commit to reducing their carbon
emissions indeed tend to do so subsequently.

Fundamental & Market Indicators. Second, we consider firms’ financial ability to en-
gage in decarbonization. To this end, we collect market and fundamental variables from
Bloomberg, including geography and industry segmentation (GICS), market capitalization,
price to book, debt to equity, free-cash-flows, long-term investments, R&D spending and
others. We also include momentum from sell-side analysts in the form of the proportion of
positive price target and earnings per share revisions over the last three months.

Ownership & Debt Structure. Third, according to several studies, the ownership struc-
ture influences both climate disclosure ande performance. Following insights from Bolton
and Kacperczyk (2021); Cohen et al. (2023) we include the percentage of float shares held
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Figure 2: Share of companies and emissions reported by year

by institutional investors as provided by Bloomberg. Kahn et al. (2023); Rink et al. (2024)
also suggest that active shareholders engaging with companies can influence their environ-
mental and social performance. Therefore, we add the percentage of insider shares’ outflow
and we compute our own estimate of active sustainable shareholders. We estimate the latter
by aggregating annual holdings from a comprehensive list of 780 active sustainable equity
funds computed by Exane Research (2023). Details about the funds’ sample can be found in
the online appendix.

In addition, we also include the structure of debt owners by computing a green debt
ratio that is the sum of green, social and sustainability-linked bonds (GSSB) over the total
debt issued.

Regional Indicators. Finally, we also believe that macro-economic and regions charac-
teristics play a significant role in firms’ ability and willingness to tackle climate change and
reduce their GHG emissions. We include the GDP growth from the World Bank, the carbon
intensity of energy mix from the IEA and an environmental policy score from the OECD. It
is worth noting the US are not covered by the OECD data and are therefore considered as
laggard in advocating ambitious environmental policies during the 2013 – 2023 period.

A summary of all variables names, sources and interpretations can be found in Table 8
in the appendix. Because corporate carbon emissions are updated on a yearly frequency, we
keep this reporting frequency in the construction of our dataset. For variables with higher
frequency such as market variables, we compute averages of past quarterly observations
when relevant. Descriptive statistics of the universe are provided in Sub-section 2.4.

In the following study, we lag all independent variables by one year, with the aim to
conduct a predictive analysis and be able to forecast next year GHG emissions based on year
t observations.
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2.2 Outliers detection and data imputation

Outliers treatment. We remove all non-positive values of the GHG emissions data, as well as
companies with non-consecutive tickers over the years to avoid any reporting inconsisten-
cies. We brute force the detection of outliers by setting a threshold at 50% reduction as well
as the 200% boosting in the intensity of emissions, compared to the previous year, based on
the assumption that such changes are unrealistic for a continuous running business. For all
independent variables, we apply a 0.1% percentile winsorization by sector to avoid extreme
value distortion.

Data imputation. We conduct data imputation for independent variables with a spe-
cific approach for each group. For sustainability indicators, we apply linear interpolation,
while for the financial and market variables, following Chen and McCoy (2024), we resort
to cross-sectional mean imputation at the sector and size level. In practice, for all ratios and
percentage variables, we group the observations by GICS sector and fill the missing values
with the cross-sectional mean of the sector each year. For absolute variables, we use the same
approach, but we also take into account the market capitalisation of the company compared
to the sector average while doing the grouping.

2.3 Omitted variables due to colinearity

Figure 8 in the Appendix presents the correlation matrix of all independent variables as
defined in the above. We observe several groups with high correlation, and therefore drop
some of them to avoid the colinearity issues in linear models estimation.

ESG Scores. We will use the three E, S and G pillars provided by ISS. Similar scores from
Eikon (Refinitiv) were discarded, as they were redundant.

Size factor. Market capitalisation, revenue and enterprise value, as well as the lag emis-
sion are highly correlated with each other. By keeping the lag emission only, we not only
avoid the colinearity issues but we also keep the most relevant information to explain firms’
future emissions.

Green Bond. The amount of green bond issued is highly correlated with the current re-
payment amount for green bonds. Thus we keep the latter, and assume that the drawdowns
is more indicative of the firm’s financial commitment to the green transition.

Regional Policy. All three regional indicators from OECD are highly correlated with each
other. We keep the cross sectional policy score for linear models. However, for deep learning
models; such as random forest, we keep all the energy mix to let the model decide which one
is the most relevant. Moreover, we include the GDP growth of the country where the firm’s
headquarters are located.

Country Energy Stack. Energy mix data from IEA appear to have strong correlation.
Hence, drop several energy sources and keep coal, electricity, gas and oil mix with the prior
belief that those energy mix could be more indicative of the firm’s ability to reduce their
emission. Again, for deep learning models, we will keep all the energy mix variables.

2.4 Descriptive statistics

We split the summary of the data in two and discriminate between the dependent variables
and the predictors.
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For each scope, we identify four types of dependent variables: i) raw emissions mea-
sured in tons CO2 equivalent (tCO2e) - which we refer to as GHG - ii) emission intensities
(INT), reflecting tCO2e per million of enterprise value (EVIC), iii) relative changes in abso-
lute emissions (∆GHG) and iv) relative changes in emissions intensities (∆INT). Formally,
if GHGt,i is the emission value of firm i and time t, then ∆GHGt,i = GHGt,i/GHGt−1,i − 1 -
and similarly for intensities.

We focus our baseline analysis on reported Scope 1+2 emissions because they are less
prone to disagreement and divergence, and hence are more reliable. We run robustness tests
on estimated emissions for scope 1+2 and both reported and estimated scope 3 emissions.
Figure 3 below and Table 9 in the appendix provide an overview of the distribution of these
variables for our baseline sample.
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Figure 3: Distribution of dependent variables.

Reported Scope 1+2 emissions tend to be larger than modeled emissions while the dy-
namic (yearly percentage change) has a similar distribution. This is in line with the findings
of Berg et al. (2024). Several arguments are plausible to explain the differences between re-
ported and modeled emissions. On the one hand, mandatory disclosure does not apply to all
companies and may induce a size and sectorial bias as large companies and industries with
significant climate-related financial materiality are targeted first by regulators. In addition,
voluntary disclosure requires financial means and skills that small companies may not have
or afford. On the other hand, modeled emissions may underestimate actual emissions due
to model bias such as sectorial approximation and inclusion of financial variables.6

Now, looking at the exogenous variables that we use as potential predictors in our forth-

6Due to a lack of precise model definition, we can’t test this assumption.
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coming analysis, we display the main descriptive statistics in Table 10. We confirm the sug-
gested bias toward larger companies, trading at higher valuations and generating higher
profit margins on average for our reported sample compared to companies in the modeled
sample. Reporting companies also tend to have better ESG and environmental scores, and
more ambitious SBTI reduction targets than non-disclosing companies. However, we do not
observe any significant differences in terms of institutional ownership nor sustainable active
ownership.

The correlation matrix of all variables presented in Table 8 in the Appendix, reveals an
intriguing fact - there is a strong correlation between absolute levels of GHG emissions and
the intensities, once scaled by enterprise value including cash (EVIC). A key reason lies in the
computation of EVIC. Indeed, EVIC calculation includes not only the market capitalization
of a company but also short-term and long-term debt, as well as any cash or cash equivalents
on the company’s balance sheet. As such, EVIC is less prone to volatility than market capital-
ization solely and therefore, GHG intensities yearly percentage change is mostly driven by
changes in the numerator. Aside from this, once controlled for outliers and colinearity as de-
scribed in Section 2.2, our set of exogenous drivers have a low number of strongly correlated
variables.

3 The drivers of decarbonization

This section seeks to decipher the determinants of decarbonization over the full sample.
First, in Section 3.1, we run linear models: both simple panels and penalized ones. As ex-
plained in Section 2.1, we lag all explanatory variable by one year. Next, in Section 3.2, we
resort to random forests in order to capture potential nonlinearities in the features that drive
emission and intensity reductions. Finally, in Section 3.3, we group firms according to their
realized variations in emissions and figure out which characteristics differ the most between
those that reduce footprint versus those that tend to pollute more.

3.1 Linear models - OLS and Lasso

Our analysis starts with linear models. We recall that we work with the four dependent
variables outlined in Section 2.4. Henceforth, we write yt+1,i for the time-t value of one of
these variable for firm i. The model thus reads:

yt+1,i = αi + at +
K∑

k=1
x

(k)
t,i b(k) + et+1,i, (1)

where the x
(k)
t,i are the K predictors retained for the analysis and listed in Table 10 in the

appendix. Note that these predictors include the lagged values of the dependent variables
(yt+1,i).

Table 2 shows the corresponding estimates with industry group fixed effect. To ease in-
terpretation, we only report t-statistics, as they provide the key message we are interested in:
the sign of the relationship, and its strength. We tested two estimators for standard errors,
namely Newey and West (1987) and Beck and Katz (1995), but as the latter yielded more
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conservative values (smaller t-statistics in absolute value), we only provide this version. Sig-
nificance decisions are emphasized with a green background in the results Table.

GHG (log) ∆GHG INT (log) ∆INT

estimated reported estimated reported estimated reported estimated reported

ISS_E 2.338 0.281 2.421 −0.348 −2.110 −0.696 −2.077 0.975
ISS_S −2.536 0.017 −2.361 −0.046 3.063 0.634 2.654 −0.281
ISS_G 0.483 −2.019 0.481 −1.338 −2.933 −5.076 −2.832 4.369

CBF −0.315 −1.829 −0.615 −1.725 −0.503 3.767 −0.833 −3.889
CBF_INT 5.036 3.651 4.644 3.543 −6.746 −6.016 −7.083 6.245

BLG_RETURN 7.249 0.174 6.908 0.031 5.174 1.026 5.732 −1.371
BLG_PE −0.154 0.381 −0.073 0.306 −0.203 1.597 −0.074 −1.502
BLG_PS 0.880 0.532 0.474 0.654 2.484 −0.138 2.777 −0.567
BLG_PB 5.142 1.664 4.842 0.976 2.557 0.660 4.202 −1.819
BLG_DE 0.650 3.233 1.038 3.923 0.585 1.368 −0.518 −0.175

BLG_LT_DEBT 1.440 −2.282 1.420 −1.319 −0.950 −1.531 −1.549 1.457
BLG_PROFIT −0.105 −0.856 −0.568 −1.029 1.087 0.146 1.432 0.650

BLG_IC_RATIO −0.800 0.778 −1.085 0.922 0.276 0.606 −0.321 −0.066
BLG_RD_EXP 3.462 −3.095 3.516 −2.781 0.640 −3.574 0.708 3.832

BLG_FCF 0.020 −0.192 −0.276 −0.005 −0.918 −2.113 −1.027 2.489
BLG_LT_INV −1.431 −0.240 −1.205 −0.463 −0.619 −0.412 −0.347 0.319

FE_REVUP_PCT 5.075 2.899 3.932 2.545 −1.562 −0.024 −2.338 0.598
BLG_SHARE_OUT 2.153 4.715 1.632 4.788 0.297 3.828 0.698 −4.545

BLG_INSTI_SHARE −0.341 −5.015 −0.423 −5.019 0.011 −2.075 −0.443 2.356
FS_GREEN_SHARE −0.593 −0.834 −0.899 −1.373 0.188 0.303 0.068 −0.389

BLG_SHARE_REPUR 0.399 2.488 0.601 2.166 0.548 0.416 0.232 −0.533
FS_GB_PAID 0.539 0.021 0.309 −0.221 0.682 0.000 0.732 0.193

WB_GDP 2.536 6.712 2.066 6.942 1.993 4.577 2.074 −5.255
IEA_COAL −1.928 7.883 −2.174 7.395 4.991 8.591 3.883 −7.772

IEA_OIL −3.387 4.084 −3.423 3.052 3.453 2.325 2.445 −0.513
SBTI 1.695 −7.442 1.324 −7.789 1.878 −4.576 1.327 5.406

GHG_S12_LOG 654.430 815.410 −14.227 −9.534
GHG_S12_PCTD 2.430 0.356 2.549 0.970

INT_S12_LOG 422.807 547.208 −12.396 10.854
INT_S12_PCTD −3.139 −5.143 −1.940 3.946

Table 2: Panel model - industry group fixed effects. We report the t-statistics for the panel models
defined in Equation (1) - all independent variables are lagged. The regressions employ two-way fixed effects
(TWFE) to account for unobserved heterogeneity. The overarching column names pertain to the dependent
variables. The sub-column panels pertain to the type of emissions considered as dependent variable. Standard
errors are computed following Beck and Katz (1995). Colors code when statistics are larger than 2.58 (light
green, 1% confidence level) or 3.3 (darker green, 0.1% confidence level) in absolute value.

The linear regression analysis reveals several common findings for both reported and
estimated data.

A first takeaway is that past GHG emissions are consistently a strong predictor of future
emissions, highlighting the inherent inertia in emission trajectories. Indeed, lagged values
of absolute emissions (GHG) and intensities (INT) are associated with the largest statistics,
by far. High levels of GHG emissions and intensities are associated with high levels of the
same variables in the following year. Similarly, an increase in GHG emissions is difficult to
overcome in the following year. This was expected because the evolution of emissions is
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highly persistent over time. In addition, we also observe that higher GHG emissions and
intensities level, allow for stronger reduction potential in the following years. Indeed, high
GHG emissions and intensities are associated with a negative t-statistic when explaining
their future variations. This result is in line with the main findings from Pastor et al. (2024)
analysis of the drivers of GHG emissions forecasts.

A second takeaway is that more than just a handful of variables are relevant to explain
the levels and changes of absolute emissions and intensities. In fact, almost each category
described in Section 2.1 has at least one significant predictor. However, we uncover notable
discrepancies between reported and estimated data, suggesting potential limitations of cur-
rent estimation models and emphasize the need for further refinement.

Biodiversity footprint also emerges as a significant driver, underscoring the interconnect-
edness between climate change and biodiversity impacts. Corporate biodiversity footprint,
measured as a negative value leads to higher GHG emissions when it increases in absolute
terms. We also observe a significant and negative effect of higher governance score on future
GHG emissions, supporting the idea that greater governance improves chances of reducing
GHG emissions.7

Additionally, certain firm-level financial characteristics, such as sales, debt-to-equity ra-
tio, demonstrate a consistent influence on GHG emissions. Positive financial performance,
proxied by average monthly return, have a positive impact on reducing future GHG emis-
sions, both in intensities but also in absolute terms. Higher debt ratio appears as a barrier to
engage in GHG emissions reductions. However, the structure of the debts seems to matter.
Indeed, long-term debt seems to allow to engage in emissions reduction in absolute terms.

The role of the macroeconomic environment, particularly GDP growth and energy mix
(specifically coal and oil usage) is another common factor affecting emission reduction dy-
namics.

Despite these shared insights, the analysis also uncovers notable discrepancies between
reported and estimated data. While environmental and social scores show limited predictive
power for reported GHG emissions, they exhibit strong significance for estimated emissions.
The result on reported data are in line with Kalesnik et al. (2022) but the latter potentially
indicate modeling biases. More surprisingly, the relationship between environmental scores
and absolute emissions is positive for estimated data, contrary to expectations.

Moreover, the impact of ambitious reduction targets reported to SBTI is evident only in
reported data. The more ambitious the reduction target, the lower GHG emissions are and
become, both in absolute values and intensities. This result suggest that while companies
with more ambitious targets are often ones with lower emissions than their peers from the
same sectors, they are nonetheless achieving higher reductions than their peers too. More-
over, current estimation models appear to not adequately capture the effect of such commit-
ments on future emissions.

Similarly, few traditional valuation ratios have an impact on future GHG emissions. The
price-to-book ratio appears significant in explaining estimated emissions, but not reported
ones. This is in line with findings from Pastor et al. (2024) studying the drivers of GHG
forecasts from MSCI and potentially underscores the fact that data providers use the B/M

7We point to Haque (2017), Elsayih et al. (2021) and Oyewo (2023) for prior work on the impact of firm
governance on corporate carbon policy.
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ratio as component of their estimation models. With regards to reported emissions, the debt-
to-equity ratio stands out.

Furthermore, companies with higher R&D spending have significantly lower GHG emis-
sions, both in level, intensities and reduction dynamic over time. The same holds for institu-
tional ownership.

We also see analysts’ sentiment (FE_REVUP_PCT) being a steady predictor of future
GHG emissions for estimated data, while it is not significant for reported data. Again, this
may point to a component of data vendors’ internal models. Finally, the influence of institu-
tional ownership on GHG emission levels and reduction dynamics is significant for reported
data but absent in estimated data.

As a robustness check, we provide in Table 11 in the Appendix the results of the regres-
sion with individual fixed-effects instead of industry group fixed-effects. The main findings
are qualitatively similar.

In order to determine which variables matter the most, we turn to LASSO (Tibshirani
(1996)) penalized regressions, a common feature selection tool in statistics. We re-write Equa-
tion (1) as

yt+1,i = Xt,ib + et+1,i,

where the matrix Xt,i includes the fixed effects. The LASSO solves

b∗ = argmin
b

||y − Xb||22 + λ||b||1,

where the shrinkage parameter, λ determines the stringency of the penalization. The larger
it is, the more sparse the model becomes (more estimated coefficients are set to zero). By
default, the {glmnet} package in the R language spans a large number of values of λ and
generates a full matrix of estimates B̂k,j , where j is the index of λj . We are then interested in
the proportion of times that a variable survives the penalization:

pk = J−1
J∑

j=1
1{B̂k,j ̸=0}. (2)

We run the models separately on reported and estimated emissions. The correspond-
ing values (in percents) are gathered in Table 3. We only list the top 15 variables for each
category: raw footprint include GHG and INT, while changes are ∆GHG and ∆INT.

To be consistent with the initial specification from Equation (1), we include fixed effects
in the model. However, they are rarely among the surviving variables and none make it even
near the top 15. For the sake of completeness, we also ran models without fixed effects, and
the results are qualitatively the same; the ranks are simply slightly altered (see Table 12 in
the appendix).

Our results confirm the main findings from the previous section presented in Table 2.
Past emissions appears to be the most predictive variables of future emissions. Biodiversity
footprint is also strongly related, emphasizing the deep interconnections between climate
and biodiversity impacts of economic activities. In addition, financial health and character-
istics such as past returns, analyst sentiment, sales, debt to equity and R&D show up again
in the top of the list. Finally, macro-economic variables such as GDP growth and country en-
ergy mix, as well as shareholder structure, especially institutional ownership are confirmed
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Raw footprint Relative change

GHG (log) INT (log) ∆GHG ∆INT
rank est. rep. est. rep. est. rep. est. rep.

1 GHG_S12_LAG 99 98 56 47 BLG_PB 99 76 99 78
2 INT_S12_LAG 22 0 99 99 BLG_SALES 87 96 74 93
3 ISS_E 9 0 32 28 BLG_SHARE_OUT 81 89 67 87
4 BLG_RETURN 0 0 28 33 FE_REVUP_PCT 95 57 79 93
5 CBF_INT 0 0 26 32 WB_GDP 55 60 99 99
6 BLG_PB 10 0 28 16 CBF_INT 75 75 83 75
7 BLG_SALES 16 0 32 4 BLG_RD_EXP 85 75 80 67
8 WB_GDP 0 0 31 16 BLG_RETURN 67 65 99 74
9 INT_S12_PCTD_LAG 7 0 0 28 BLG_LT_DEBT 71 88 73 72

10 FE_REVUP_PCT 0 0 6 29 INT_S12_PCTD_LAG 68 76 77 82
11 BLG_CAP 0 0 8 25 GHG_S12_PCTD_LAG 80 75 74 72
12 BLG_RD_EXP 0 0 12 20 SBTI 55 99 76 71
13 BLG_SHARE_OUT 0 0 18 11 BLG_DE 85 60 84 59
14 BLG_SHARE_REPUR 7 0 19 0 OECD_CROSS 37 92 81 78
15 BLG_FCF 0 0 24 0 ISS_E 85 55 79 67
16 BLG_INSTI_SHARE 0 0 24 0 BLG_LT_INV 71 75 66 64
17 IEA_COAL 0 0 0 23 BLG_FCF 75 49 69 70
18 SBTI 0 0 14 7 INT_S12_LAG 71 75 53 63
19 BLG_EVIC 0 0 17 3 BLG_INSTI_SHARE 47 89 54 71
20 IEA_ELEC 0 0 14 4 BLG_PS 75 48 84 46

Table 3: Lasso survival rate. We report the percentage of times that a given variable survives LASSO
selection (see Equation (2)). The rank of the variable is determined by the average of the the four columns.
Fixed effects are included in the model.

as significant drivers of firms future GHG emissions. However, it is noteworthy to see that
environmental score comes up as a significant driver too, while despite having a quite large t-
statistic, it was not the case when looking at the panel regression estimates. This underlines
the current ambiguous academic findings about E,S and G scores usefulness in predicting
future GHG emissions, as different studies such as Kalesnik et al. (2022); Pastor et al. (2024)
present diverging results.

3.2 Inference from non-linear models - Random forests

To further explain emissions and intensity changes over time, we leverage on random forests.
The rationale for this choice is two-fold. First, tree-based supervised learning performs very
well on tabular data (Grinsztajn et al. (2022), Januschowski et al. (2022), Shwartz-Ziv and
Armon (2022)). Second, these methods are readily interpretable via the feature importance
metrics that are computed once the models are trained (see, e.g., Molnar (2020)). In ad-
dition, statistical tests have also been developed to evaluate the significance of features in
these models (see, e.g., Mentch and Hooker (2016)), as well as confidence intervals based
on resampling and deleted-d jacknife estimators (Ishwaran and Lu (2019)). We follow this
approach in our analysis.

In Figure 4, we report the confidence regions for the feature importance, computed over
100 bootstraps. The most important predictor is shown at the top and all values are normal-
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ized so that the top feature has an average importance of 1.
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Figure 4: Confidence regions for feature importance. We plot the median (center), inter-
quartile range (boxes) and 95% interval (whiskers) for the variable importance, following
Ishwaran and Lu (2019). The number of bootstrap samples is 100. The forests were fitted
separately on the estimated (left panels) and reported (right) variations, as well as on raw
emissions (top panels) and intensities (bottom).

We focus on changes of GHG emissions and intensities as absolute values are strongly
driven by past values. Therefore non-linear modeling will make less of a difference to explain
absolute values compared to their dynamic.

Our results confirm the predictive power of past values of the dependent variable. In
the top left panel, GHG past emissions has a feature importance median almost twice as
large as the next feature which is the biodiversity footprint of the company. As in Table
2, this emphasizes how intertwined climate and biodiversity are. Biodiversity intensity is
also the second predictor for changes in reported intensities (bottom right panel). We find
relatively smaller values for reported data and intensities, but past emissions stay among the
top predictors.

Macroeconomic variables appear more significant compared to non-penalized linear mod-
els for GHG emissions. Interestingly, for estimated GHG emissions, some new variables ap-
pear, for instance related to the OECD and to the IEA. The latter were already associated
with significant t-statistics in Table 2.

In all panels, local economic growth (WB_GDP) is key. This can be perhaps explained
by the fact that growth can have an impact on the denominator of the intensity and it also
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echoes the high (absolute) statistics in Table 2.
The nonlinear models confirm the results reported above. The main difference with Table

2 is the absence of financial ratios like B/M or D/E. The return was significant for estimated
data in the table, and in Figure 4, it only stands out for intensities - both reported and esti-
mated.

3.3 The characteristics of decarbonizing firms

This last sub-section pertains to the characteristics of sorted firms. We first split the sample,
on a year-by-year basis, in two groups: firms with low versus high dependent variable.8

Then, for each group, we compute the average of characteristics. Finally, for each character-
istic, we test if the average value is significantly different, from one group to the other (high
GHG or INT versus low GHG or INT). Figure 5 displays our findings for levels of GHG emis-
sions while Figure 9 provided in Appendix extends the analysis to GHG intensities. It plots
the absolute t-statistics of the tests for which the null is that there is no difference between
the two groups.

We observe common drivers among top vs bottom performers across both GHG absolute
emissions and their dynamic for reported and estimated values. First, some firms’ financial
characteristics such as returns, sales, and price-to-book ratios have significant influence. An-
alysts’ sentiment (FE_REVUP_PCT) also contributes to differentiate between top and bottom
performers. In addition, past GHG emissions’ dynamic is a critical predictor of firms with
future high or low levels of emissions.

Nonetheless, we still find many discrepancies between reported and estimated data. In-
deed, estimated data seems to rely on financial momentum, leveraging on past returns and
analysts sentiment, as well as the price to book to account for companies valuation. It is
not what we observe for reported data however. In this sample, the structure of long term
debt and investment matters more than valuation and financial momentum to explain top
versus low carbon performers. Moreover, the ownership structure of the company and its
commitments to reduce GHG emissions (SBTI) are only slightly explaining top versus low
performers in estimated data while their are of first importance when considering reported
data only.

Finally, when comparing Table 5 to Table 9, we find that the impact of institutional own-
ership is more relevant in explaining top versus bottom performers in carbon intensities
than it is for absolute emissions. This underlines the importance of carbon intensities as a
metric for investment decisions, whereas absolute level of emissions are currently not being
well integrated in portfolio alignment frameworks. Therefore, institutional investors may
overweight their investments in companies with low emissions intensities while missing the
big picture of absolute emissions. The results also logically emphasize the increased impact
of firms’ market capitalization and financial performance in explaining top versus bottom
performers in GHG intensities versus absolute emissions.

8This approach is used in Seyfi (2024) to understand the characteristics of low versus high return US stocks.
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Figure 5: Characteristics of decarbonizing firms. We plot the absolute values of the t-
statistics of the tests in differences in means between characteristics with high versus low
∆GHG.

4 Forecasting

4.1 Out-of-sample analysis

Being able to understand what influences emission dynamics in the cross-section of firms is
crucial for investors seeking portfolios decarbonization in accordance with Net-Zero pledges
(see, e.g., Bolton et al. (2022) and Le Guenedal et al. (2022)). However, corporate strategies
with respect to emissions evolve constantly, both at the micro and the macro level, hence
forecasting carbon footprints is hard and besting simple benchmarks is even more challeng-
ing.

In this section, we analyze the out-of-sample accuracy of our emission forecasts. Impor-
tantly, this section only focuses on reported emissions. Due to data restriction, the training
set consists of all observations, except from the last year (2022), while the test set encom-
passes all points from this last year. In terms of algorithms, we stick to random forests, as in
the previous section. Formally, the model is
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yt+1,n = f(xt,n) + et+1,n, (3)

where f is the non-linear model and et+1,n the residuals. The predictors xt are the variables
used so far in the paper. Note that we use the notation y as is customary in the literature;
in our study, it will stand for (log) emissions, (log) intensities, and variations thereof. Im-
portantly, we focus solely on reported data. We work with logarithmic values to avoid the
squared errors to be heavily biased towards the large emitters only. We also highlight the lag
between the dependent variable (at time t + 1) and the predictors (in t). The metric we will
report is the RMSE (root mean squared error), likely the most common choice in regression
tasks:

RMSE =

√√√√ 1
N

N∑
n=1

(
yT +1,n − f̂(xT,n)

)2
, (4)

where f̂ is the trained model, T is the testing date and N the corresponding number of firms.
In order to assess the quality of our forecast, we define two benchmark values. The first

benchmark is the RMSE when the prediction is the (log) emission from the previous year,
i.e., assuming nothimng has changed from 2021 to 2022. The second benchmark is the error
we make when extrapolating the trend of emissions and intensities using a linear model. For
this benchmark, we restrict the testing set to the firms for which all points between 2016 and
2022 are available. Indeed, the extrapolation mostly makes sense if a minimum of points
are available. To motivate this choice, we show in Figure 6 a few examples of log emission
trends for large corporations. These trends show that extrapolating, which seems natural,
seems to be a fairly promising approach.

As is customary in machine learning practice, we run the analysis on several values of
the important parameters of the model, which we summarize in Table 4 below.

short name description tested values

ntree number of trees 150, 500, 1500
mtry % of columns used to train each tree 0.6, 0.9

sampsize % of original sample used for each tree 0.6, 0.9
nodesize max. size of leaves as % of training sample 0.0005, 0.001, 0.005

maxnodes max. number of leaves per tree 1000, 2000, 5000

Table 4: Hyper-parameters. We list the hyper-parameters we used in our first baseline at-
tempt, along with the tested values.

Our main results are gathered in Table 5. The first rows (Panel A) indicate the benchmark
errors when predicting the four dependent variables (in columns): GHG, GHG PCT (relative
variation in emissions), INT and INT PCT (relative variation in intensities). We report the
errors both on the full sample of 2022 and also on the subset of firms for which all points are
available (“sub” columns in the table).

An interesting takeaway from these preliminary results is that extrapolation is not the
best option. This can be surprising, given the seemingly promising examples shown in Fig-
ure 6, but in fact, while the good performance of extrapolation holds for large firms, it is
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Figure 6: Extrapolation for large firms. We show the dynamics of reported log emissions for
the six largest firms in the sample (in terms of revenue) for which all seven years of data are
available. The first six years are shown in grey and the last point is the extrapolation. The
realized value for 2022 is shown in red.

much more erratic for smaller firms. In Figure 10 in the Appendix, we provide a few ex-
amples for which firms experience sharp shocks in their emission trajectory in 2022, leading
extrapolation to fail badly. This may explain why the simpler prediction that assumes con-
stant emissions can work better, as it is less exposed to contrarian moves.

The next batch of rows (Panel B in Table 5) provides the minimum, median and maximum
of the RMSE across the 108 hyperparameter combinations of Table 4. Plainly, they show that
the sophisticated algorithms do not perform better than the heuristic benchmarks, except
perhaps for the relative change in intensities (INT PCT).

To try to improve on these disappointing results, we tested another approach. Given the
relative good performance of the constant benchmark, we sought to predict the drivers of
the raw variations. In doing so, we hope to reduce the error from the simplest benchmark.
In this case, the dependent variable in the models becomes

∆i,t =
{

log(GHGi,t) − log(GHGi,t−1) for emissions
log(INTi,t) − log(INTi,t−1) for intensities. (5)

Upon calibration of the model, the estimates for log emissions and log intensities are then

log(GHGi,t−1) + ∆̂i,t, log(INTi,t−1) + ∆̂i,t,

where ∆̂i,t is the value predicted from the model (either for emissions or for intensities). In
particular, this is suited to raw numbers, but not to the GHG and INT percent changes. The
corresponding errors are gathered in Panel C of Table 5. They are all smaller than in Panel
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dependent variable GHG GHG PCT INT INT PCT
sample all sub all sub all sub all sub

PANEL A: benchmarks
constant 0.242 0.219 0.277 0.235 0.337 0.293 0.455 0.373

extrapolation - 0.299 - 0.264 - 0.393 - 0.411

PANEL B: random forests (statistics across HP combinations)
min 0.249 0.224 0.284 0.245 0.348 0.302 0.416 0.352

median 0.251 0.226 0.292 0.252 0.352 0.305 0.419 0.354
max 0.271 0.229 0.296 0.257 0.373 0.310 0.424 0.356

PANEL C: learning from errors (statistics across HP combinations)
min 0.243 0.221 - - 0.336 0.297 - -

median 0.245 0.223 - - 0.339 0.299 - -
max 0.248 0.225 - - 0.342 0.302 - -

Table 5: Out-of-sample performance. We report the root mean squared errors (RMSE) of the
predictive models for the year 2022. In Panel A, we report two benchmarks: the constant value (from
2021) and the extrapolated one, from 2016 to 2021. For the extrapolation, the estimations are run on
the set of firms for which all seven data points of reported emissions are available (we refer to this
set as “sub”). In Panel B, we report the statistics (minimum, median and maximum) of the RMSE
when spanning the hyperparameter space described in Table 4. The minimum value of each column
is highlighted in bold.

B, suggesting that this approach is better for forecasting purposes, compared to the brute RF
models. Nevertheless, they mostly do not beat the benchmarks, except for one exception.

4.2 Classification

The results in the previous section are disappointing both because the sophistication in mod-
els does not enhance performance, but also because performance itself is not easy to interpret
- this is a common drawback of the RMSE.

To bypass these limitations, we propose to forecast decarbonization as a binary (dummy)
variable. A firm is termed “decarbonizing” at year t if its emissions in t are lower than in year
t − 1. We will use the same designation for intensity reduction. The corresponding value for
the dependent variable is one and the only other possible value is zero if the firm is projected
to increase its emissions in 2022. We consider three benchmarks:

1. constant status: a firm is forecasted to decarbonize in 2022 if it had reduced its footprint
in 2021 (compared to 2020).

2. regression forecast: we use the linear trend from 2016 to 2021 to forecast a value in
2022. If it is lower than that in 2021, then we predict a decarbonization.

3. regression slope: given the above trend, we predict lower emissions if the slope is
negative.

The forecasting accuracy of these benchmarks is reported in Panel A in Table 6. The
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accuracy is simply the proportion of correct predictions. When the samples are perfectly
balanced, a natural yardstick is 50%, which corresponds to a coin toss.

dependent variable 1∆GHG<0 1∆INT <0
sample all sub all sub

PANEL A: Benchmarks
constant 0.504 0.513 0.471 0.474
linear prediction - 0.506 - 0.445
slope sign - 0.522 - 0.391

PANEL B: Random Forest predictions (regression)
min 0.501 0.487 0.445 0.444
median 0.510 0.506 0.478 0.479
max 0.524 0.527 0.496 0.503

PANEL C: Random Forest predictions (classification)
min 0.565 0.583 0.426 0.436
median 0.584 0.600 0.446 0.453
max 0.593 0.621 0.474 0.487

Proportion of GHG reduction Proportion of INT reduction

2016 2018 2020 20222016 2018 2020 2022
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Table 6: Classification of decarbonization. In the left table, we report the accuracy of the pre-
dictive models for the year 2022. In Panel A, we report three benchmarks: i) the decarbonization
status of 2021 is assumed to remain, ii) the linear prediction is used to determine if emissions or in-
tensities will decreases and iii) the slope of the linear regression is used (a negative slope meaning
decarbonization). For the latter two, the estimations are run on the set of firms for which all seven
data points of reported emissions are available (we refer to this set as “sub”). In Panel B, we report
the statistics (minimum, median and maximum) of the accuracy when spanning the hyperparameter
space described in Table 4. In this case, the RF models are used to generate predictions for 2022 and
decarbonization is inferred from the realized 2021 emissions and intensities. In Panel C, it is the bi-
nary variable of decarbonization that is directly forecasted. In the right plot, de depict the evolution
of the proportion of decarbonizing firms, both with respect to GHG and INT, and also discriminating
between reported (black) and estimated (grey) figures.

We do obtain metrics above 50%, especially in Panel C when predicting GHG emissions.
The models have a much harder time forecasting intensities, for reasons that remain unclear.
Perhaps one potential explanation comes from the plot next to Table 6. It shows that the
aggregate proportion of firms that decarbonize is much more stable for raw emissions com-
pared to intensities. In particular, the proportion of firms reducing their emissions is always
above 50%, which boosts out-of-sample performance.

4.3 Sector discrepancies

Finally, we dive into the dependence of our results to sectors. In Figure 7, we depict the
RMSE, but this time averaged for each sector separately. This reveals pronounced discrep-
ancies, with utilities being the industry that appears the easiest to forecast, while information
technology is the hardest.

Some sectors are harder to abate and also more material when it comes to GHG emissions.
This is the case of Industrials, Real Estate and Energy for instance. The former are among
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Figure 7: Sector variations. This plot shows the RMSE of the predictive models from Table 5
(Panel B) aggregated at the sector level. The error bars mark the variations across the hyper-
parameters. The dashed red lines shows the RMSE over all sectors.

the hardest sectors to forecast, while for the other two, our models fare better.

5 Conclusion

This paper seeks to leverage data mining to understand the characteristics of decarbonizing
firms. First, there are large discrepancies between reported and estimated emissions. The
former, calculated by data providers are much based, according to our results, on accounting
data, and they counter-intuitively give little weight to pledges such as those recorded by the
SBTI.

A second important takeaway is that sophisticated nonlinear models based on panel data
do not outperform simple methods and that extrapolation is not the best benchmark due to
potential reversals is corporate emission policies.

With regards to the important variables for decarbonization, it is hard to tell a compelling
story. Sustainability-linked features, such as biodiversity footprint matter, but so do other
more mundane financial indicators, such as past returns and the book-to-market ratio. Ana-
lysts’ sentiment and macroeconomic indicators are, too, often relevant in explaining carbon
trajectories.

Our analysis on classification further shows that aggregate trends have an impact on
model accuracy. Global proportions of decarbonizing firms strongly relates with the perfor-
mance of the models we used.

Finally, our study reveals the differences of errors across industries. Some industries (e.g.,
utilities) are easier to predict than others (information technology). With regards to sectors
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with high carbon materiality, e.g., industrials, materials, energy and real estates, the situation
is not clear cut. They belong to the set of industries for which emissions are neither very hard
nor simple to forecast.
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6 Appendix

6.1 Variable definitions

Parameter Source Description

I. GHG Emissions
ISS_GHG_S1 ISS ESG Scope 1 GHG emissions, expressed in tons equivalent CO2 (tCO2e)
ISS_GHG_S2 ISS ESG Scope 2 GHG emissions, expressed in tons equivalent CO2 (tCO2e)
ISS_GHG_S3 ISS ESG Scope 3 (upstream & downstream) GHG emissions, expressed in tons equivalent CO2 (tCO2e)

II. Emissions characteristics
ISS_Source ISS ESG GHG Emissions source (reported vs. estimated)

Table 7: Description of dependant variables

Parameter Source Description

I. Sustainability Indicators, previous period
ISS_E ISS ESG ISS Environmental Score
ISS_S ISS ESG ISS Social Score
ISS_G ISS ESG ISS Governance Score
EK_S Refinitiv Refinitiv Social Pillar Score
EK_G Refinitiv Refinitiv Governance Pillar Score
EK_E Refinitiv Refinitiv Environmental Pillar Score
CBF Iceberg DataLab Corporate Biodiversity Footprint (CBF), expressed in km2.MSA

CBF_INT Iceberg DataLab Corporate Biodiversity Footprint (CBF), scaled by EVIC
SBTI ISS ESG Corporate voluntary emissions targets indicator

II. Fundamental & Market Indicators
COUNTRY_ISO Bloomberg Country of main quotation

Continued on next page
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(Continued)
Parameter Source Description

GICS_SECTOR Bloomberg GICS Sector
GICS_IG Bloomberg GICS Industry Group
BLG_RETURN Bloomberg Average annualised day to day return net of dividend
BLG_EVIC Bloomberg Monthly end enterprise value including cash (EVIC), year average
BLG_SALES Bloomberg Sales revenue turnover, yearly fundamental
BLG_PE Bloomberg Price to earning ratio, calendar year average
BLG_PS Bloomberg Price to sales, calendar year average
BLG_PB Bloomberg Price to book ratio, calendar year average
BLG_CAP Bloomberg Monthly end market capitalization, calendar year average
BLG_DE Bloomberg Total debt to total equity ratio, yearly fundamental
BLG_LT_DEBT Bloomberg Long term debt on the balance sheet, yearly fundamental
BLG_PROFIT Bloomberg Profit margin ratio, yearly fundamental
BLG_IC_RATIO Bloomberg Interest coverage ratio, yearly fundamental
BLG_RD_EXP Bloomberg Research and development expenditure, income statement yearly fundamental
BLG_FCF Bloomberg Free cash flow, yearly fundamental
BLG_LT_INV Bloomberg Long term investment, yearly fundamental
FE_REVUP_PCT FactSet Percetnage of analyst upward revisions in the last 3 months, clendar year average.

III. Ownership & Debt Structure
BLG_SHARE_OUT Bloomberg Percentage of insider shares outflow at the end the reporting period
BLG_INSTI_SHARE Bloomberg Percentage of float shares held by institutions, calendar year average
FS_GREEN_SHARE Exane, Factset Percentage of shares held by "Active" sustainable ESG funds as identified by Exane (2023).
BLG_SHARE_REPUR Bloomberg Total value of shares repurchased, yearly fundamental
FS_GB_ISSUE FactSet Accumulated Green Bond issuance (% of total long-term debt)
FS_GB_PAID FactSet Accumulated Green Bond repaid (% of total long-term debt)

IV. Regional Indicators
OECD_CROSS OECD OECD Cross sectional Environmental policy Stringency, No US information, considered 0
OECD_INT OECD OECD Cross International Environmental policy Stringency, No US information, considered 0
OECD_SEC OECD OECD Cross Sectoral Environmental policy Stringency, No US information, considered 0

Continued on next page
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(Continued)
Parameter Source Description

WB_GDP World Bank GDP growth percentage. Taiwan from different source
IEA_COAL IEA Coal Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_CRUDE IEA Crude Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_ELEC IEA Electricity Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_HEAT IEA Heat Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_GAS IEA Natural Gas Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_OIL IEA Oil Energy Country Level Energy Consumption Ratio from IEA yearly
IEA_RENEWABLE IEA Renewables Energy Country Level Energy Consumption Ratio from IEA yearly

Table 8: Description of explanatory variables
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6.2 Descriptive statistics

type N min 25% median mean 75% max std. dev.

GHG estimated 13583 3.84 8.93 10.18 10.34 11.53 19.53 2.08
GHG reported 14583 3.26 10.63 12.15 12.26 13.82 19.75 2.47
∆GHG estimated 13583 -49.60 -3.45 5.17 11.27 18.45 194.10 30.71
∆GHG reported 14583 -49.46 -10.63 -1.90 2.74 7.64 194.10 29.05

INT estimated 13583 -4.03 1.18 2.44 2.52 3.71 9.55 1.87
INT reported 14583 -6.05 1.56 3.16 3.10 4.69 10.85 2.32
∆INT estimated 13583 -49.87 -18.98 -1.23 6.23 20.91 195.24 38.01
∆INT reported 14583 -49.87 -19.63 -3.45 3.86 17.09 195.24 36.56

Table 9: Descriptive statistics of dependant variables for Scope 1+2 We report the baseline
indicators for our four dependent variables. Emissions are initially in tons equivalent CO2, and we
then take the log. Variations in emissions and intensities (∆GHGt,i and ∆INTt,i) are trimmed below
50% and above 200%. Emissions are reported after the log. Intensities are computed as raw emissions
divided by Enterprise Value including Cash (EVIC) in USD.

.
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Figure 8: Correlation matrix of all initial variables.
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Panel A: Modeled

Parameter count mean std min 1% 50% 99% max

I. Sustainability Indicators
ISS_E 13583 1.64 0.35 1.00 1.03 1.68 2.72 3.31
ISS_S 13583 1.76 0.31 1.06 1.11 1.72 2.82 2.92
ISS_G 13583 2.19 0.32 1.02 1.26 2.26 2.96 3.39
EK_S 13583 40.59 15.74 0.36 3.23 45.44 78.50 96.85
EK_G 13583 48.09 16.58 0.42 6.24 50.58 83.61 97.31
EK_E 13583 27.13 19.02 0.00 0.00 30.79 71.08 92.29
CBF 13583 −3.34 × 103 1.06 × 104 −8.94 × 105 −4.94 × 104 −819.40 −0.16 1.21
CBF_INT 13583 −2.75 10.66 −556.10 −35.65 −0.44 −1.00 × 10−5 6.00 × 10−5

SBTI 13583 0.03 0.28 0.00 0.00 0.00 2.00 3.00

II. Fundamental & Market Indicators
BLG_RETURN 13583 11.52 38.55 −79.48 −57.40 6.30 128.14 426.00
BLG_EVIC 13583 6.39 × 103 2.46 × 104 74.41 153.41 2.20 × 103 6.12 × 104 8.14 × 105

BLG_SALES 13583 5.48 1.39 0.83 2.41 5.42 9.00 11.25
BLG_PE 13583 62.89 563.41 0.42 3.72 19.94 603.11 2.68 × 104

BLG_PS 13583 4.18 27.69 0.03 0.13 1.88 26.13 1.61 × 103

BLG_PB 13583 1.31 0.67 0.10 0.34 1.17 3.63 6.04
BLG_CAP 13583 7.40 1.22 3.20 4.76 7.35 10.46 12.79
BLG_DE 13583 3.54 1.64 0.00 0.00 3.92 6.82 9.66
BLG_LT_DEBT 13583 1.23 × 103 5.17 × 103 0.00 0.00 188.60 1.99 × 104 1.47 × 105

BLG_PROFIT 13583 −25.15 1.34 × 103 −8.19 × 104 −166.55 7.84 90.63 583.82
BLG_IC_RATIO 13583 568.83 5.90 × 103 −1.55 × 104 −381.15 23.25 6.73 × 103 3.34 × 105

BLG_RD_EXP 13583 1.15 1.37 0.00 0.00 0.57 4.99 8.11
BLG_FCF 13583 42.48 223.34 −3.21 × 103 −282.35 14.31 725.39 4.90 × 103

BLG_LT_INV 13583 1.68 × 103 1.78 × 104 0.00 0.00 6.64 3.06 × 104 6.93 × 105

FE_REVUP_PCT 13583 57.87 28.32 0.00 0.00 60.00 100.00 100.00

III. Ownership & Debt Structure
BLG_SHARE_OUT 13583 1.30 1.14 0.00 0.00 1.09 4.06 4.44
BLG_INSTI_SHARE 13583 4.01 0.77 0.00 1.58 4.20 4.98 5.70
FS_GREEN_SHARE 13583 0.22 1.00 0.00 0.00 0.00 3.66 24.68
BLG_SHARE_REPUR13583 14.23 54.61 −7.00 × 10−5 0.00 2.41 203.98 2.58 × 103

FS_GB_ISSUE 13583 9.00 × 10−4 0.02 0.00 0.00 0.00 0.00 0.93

Continued on next page
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(Continued)

Parameter count mean std min 1% 50% 99% max

FS_GB_PAID 13583 8.80 × 10−4 0.02 0.00 0.00 0.00 0.00 0.93

IV. Regional Indicators
OECD_CROSS 13583 1.61 1.95 0.00 0.00 0.00 6.63 7.31
OECD_INT 13583 1.63 1.88 0.00 0.00 0.00 6.79 8.29
OECD_SEC 13583 2.36 2.47 0.00 0.00 0.00 6.00 6.30
WB_GDP 13583 2.68 3.49 −11.17 −5.57 2.29 13.39 24.48
IEA_COAL 13583 0.06 0.09 0.00 5.89 × 10−3 0.02 0.39 0.39
IEA_CRUDE 13583 2.32 × 10−3 3.01 × 10−3 0.00 0.00 1.39 × 10−3 0.01 0.04
IEA_ELEC 13583 0.23 0.04 0.05 0.13 0.22 0.33 0.48
IEA_HEAT 13583 0.02 0.03 0.00 0.00 3.91 × 10−3 0.13 0.20
IEA_GAS 13583 0.18 0.07 0.00 0.03 0.20 0.31 0.35
IEA_OIL 13583 0.45 0.08 0.24 0.24 0.48 0.66 0.71
IEA_RENEWABLE 13583 0.07 0.05 0.00 0.00 0.06 0.25 0.64

Panel B: Reported

Parameter count mean std min 1% 50% 99% max

I. Sustainability Indicators
ISS_E 14583 1.81 0.37 1.00 1.03 1.76 2.80 3.51
ISS_S 14583 1.85 0.32 1.02 1.11 1.78 2.82 3.32
ISS_G 14583 2.30 0.41 1.00 1.27 2.29 3.32 3.66
EK_S 14583 61.40 18.84 0.89 13.89 60.56 95.21 98.20
EK_G 14583 59.30 19.24 0.10 12.51 58.56 94.19 99.45
EK_E 14583 57.91 21.05 0.00 7.15 58.08 95.80 99.13
CBF 14583 −3.91 × 103 4.50 × 104 −5.32 × 106 −4.51 × 104 −882.48 −0.10 377.17
CBF_INT 14583 −1.00 4.37 −272.35 −14.35 −0.09 −1.00 × 10−5 6.69 × 10−3

SBTI 14583 0.86 1.16 0.00 0.00 0.00 3.00 3.00

II. Fundamental & Market Indicators
BLG_RETURN 14583 10.89 34.45 −79.48 −54.03 7.71 115.10 424.15
BLG_EVIC 14583 3.08 × 104 7.94 × 104 87.75 418.22 9.08 × 103 3.87 × 105 1.75 × 106

BLG_SALES 14583 7.20 1.45 1.76 3.97 7.17 10.58 11.77
BLG_PE 14583 33.02 175.11 0.10 3.23 17.48 269.24 1.44 × 104

Continued on next page
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(Continued)

Parameter count mean std min 1% 50% 99% max

BLG_PS 14583 7.24 258.02 0.03 0.12 1.32 15.90 1.67 × 104

BLG_PB 14583 1.18 0.65 0.10 0.29 1.04 3.44 6.04
BLG_CAP 14583 8.69 1.45 3.64 5.66 8.63 12.25 14.19
BLG_DE 14583 4.04 1.33 0.00 0.00 4.19 6.98 9.59
BLG_LT_DEBT 14583 7.01 × 103 2.15 × 104 0.00 0.00 1.46 × 103 1.08 × 105 3.21 × 105

BLG_PROFIT 14583 13.12 344.85 −3.72 × 103 −62.92 6.88 108.70 2.32 × 104

BLG_IC_RATIO 14583 156.17 934.54 −1.41 × 103 −25.95 11.37 2.84 × 103 7.75 × 104

BLG_RD_EXP 14583 1.98 2.03 0.00 0.00 1.67 7.24 8.83
BLG_FCF 14583 288.50 919.69 −6.10 × 103 −806.30 69.93 4.29 × 103 1.56 × 104

BLG_LT_INV 14583 1.00 × 104 6.09 × 104 0.00 0.00 66.49 2.68 × 105 1.24 × 106

FE_REVUP_PCT 14583 58.79 24.64 0.00 0.00 60.00 100.00 100.00

III. Ownership & Debt Structure
BLG_SHARE_OUT 14583 0.61 0.88 0.00 0.00 0.21 3.83 4.44
BLG_INSTI_SHARE 14583 4.10 0.54 0.00 2.54 4.17 4.98 5.98
FS_GREEN_SHARE 14583 0.19 0.63 0.00 0.00 0.04 2.16 24.68
BLG_SHARE_REPUR14583 81.32 373.74 −0.39 0.00 3.53 1.43 × 103 1.04 × 104

FS_GB_ISSUE 14583 0.03 1.14 0.00 0.00 0.00 0.27 79.59
FS_GB_PAID 14583 0.03 1.14 0.00 0.00 0.00 0.26 79.59

IV. Regional Indicators
OECD_CROSS 14583 2.87 2.39 0.00 0.00 3.23 7.30 7.31
OECD_INT 14583 2.88 2.39 0.00 0.00 3.40 8.14 8.34
OECD_SEC 14583 3.45 2.48 0.00 0.00 4.85 6.30 6.30
WB_GDP 14583 1.98 3.92 −11.17 −10.36 2.22 13.39 24.48
IEA_COAL 14583 0.04 0.05 0.00 4.87 × 10−3 0.02 0.25 0.36
IEA_CRUDE 14583 1.80 × 10−3 3.88 × 10−3 0.00 0.00 1.80 × 10−4 0.03 0.04
IEA_ELEC 14583 0.23 0.05 0.05 0.16 0.22 0.46 0.48
IEA_HEAT 14583 0.02 0.03 0.00 0.00 4.09 × 10−3 0.16 0.20
IEA_GAS 14583 0.18 0.08 0.00 0.02 0.17 0.34 0.35
IEA_OIL 14583 0.45 0.06 0.25 0.26 0.46 0.62 0.71
IEA_RENEWABLE 14583 0.07 0.05 0.00 0.02 0.06 0.27 0.64

Table 10: Summary statistics of predictors - Modeled and Reported
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6.3 OLS with individual fixed-effects

GHG (log) ∆GHG INT (log) ∆INT

estimated reported estimated reported estimated reported estimated reported

ISS_E 4.499 −0.011 4.443 −0.031 1.072 0.073 1.306 0.107
ISS_S −4.753 1.665 −4.276 1.735 1.468 1.785 0.810 1.278
ISS_G 0.492 −5.234 0.413 −5.051 −3.860 −6.839 −3.606 −6.271

CBF −0.441 −0.847 −0.968 −0.400 1.070 5.071 0.320 5.301
CBF_INT 2.372 2.045 1.863 1.558 −6.175 −5.338 −6.034 −5.521

BLG_RETURN 2.211 −3.787 2.334 −3.338 1.877 −5.239 0.378 −5.988
BLG_PE −0.046 1.042 0.267 0.659 1.551 1.098 1.230 0.944
BLG_PS −0.816 0.363 −1.159 0.450 0.237 0.321 0.251 0.623
BLG_PB 1.914 −0.005 2.205 0.086 1.121 0.189 1.642 1.025
BLG_DE −2.904 0.697 −3.241 0.671 −5.426 −0.628 −5.819 −0.918

BLG_LT_DEBT −0.847 0.989 −1.225 1.668 −1.302 −0.740 −1.569 −0.047
BLG_PROFIT −0.705 −0.631 −1.150 −0.675 0.005 −0.058 0.150 −0.738

BLG_IC_RATIO −1.325 1.462 −1.661 1.892 −2.280 −0.033 −2.646 0.115
BLG_RD_EXP −0.043 1.262 −0.265 0.592 0.518 −0.073 0.601 −0.287

BLG_FCF 0.106 −0.126 −0.029 0.371 −0.432 −1.618 −0.256 −1.461
BLG_LT_INV −0.049 −2.854 0.392 −2.615 0.476 −2.064 0.773 −1.993

FE_REVUP_PCT 2.297 0.066 1.466 0.184 −1.646 1.282 −2.278 0.569
BLG_SHARE_OUT 0.505 −0.103 0.141 −0.415 0.613 0.472 0.095 0.420

BLG_INSTI_SHARE 1.255 −1.517 1.417 −1.679 2.933 −1.012 3.256 −1.156
FS_GREEN_SHARE 0.195 0.815 0.149 0.872 −1.151 0.147 −0.893 0.336

BLG_SHARE_REPUR 0.095 1.455 0.446 1.539 0.497 0.748 0.759 1.253
FS_GB_PAID −0.343 0.408 −0.484 0.356 −0.396 0.303 −0.156 0.280

WB_GDP 1.398 1.345 1.075 1.428 2.198 0.902 2.087 1.608
IEA_COAL −2.662 −1.103 −3.154 −0.456 3.583 −0.520 2.595 −0.888

IEA_OIL −0.592 2.832 −1.124 2.364 0.958 2.301 0.582 1.259
SBTI 1.739 −3.894 1.287 −3.010 1.805 −4.219 1.232 −3.764

GHG_S12_LOG 80.324 65.798 −17.109 −21.542 15.762 12.338 15.158 10.132
GHG_S12_PCTD −6.476 −5.110 −7.330 −6.363 −2.712 −0.828 −1.760 −0.224

INT_S12_LOG −2.953 −1.222 −3.264 −1.479 44.868 41.645 −31.088 −29.475
INT_S12_PCTD −1.586 −3.760 −1.453 −3.083 −3.759 −6.317 −5.205 −7.419

Table 11: Panel model. We report the t-statistics for the panel models defined in Equation (1) - all indepen-
dent variables are lagged. The regressions employ two-way fixed effects (TWFE) to account for unobserved
heterogeneity. The overarching column names pertain to the dependent variables. The sub-column panels
pertain to the type of emissions considered as dependent variable. Standard errors are computed following
Beck and Katz (1995). Colors code when statistics are larger than 2.58 (light green, 1% confidence level) or 3.3
(darker green, 0.1% confidence level) in absolute value.
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6.4 LASSO surviving rates without fixed effects

Raw footprint Relative change

GHG (log) INT (log) ∆GHG ∆ INT
rank est. rep. est. rep. est. rep. est. rep.

1 INT_S12_LAG 0 34 99 99 WB_GDP 94 99 90 77
2 GHG_S12_LAG 98 98 25 7 FE_REVUP_PCT 87 73 99 99
3 WB_GDP 35 30 30 23 EK_S 75 97 59 89
4 FE_REVUP_PCT 20 0 42 44 OECD_CROSS 75 88 79 77
5 EK_S 8 17 1 31 IEA_COAL 71 89 81 76
6 BLG_PB 30 0 0 21 BLG_PB 99 75 54 75
7 ISS_E 17 0 34 0 EK_E 52 96 64 86
8 IEA_COAL 0 20 7 23 BLG_LT_INV 66 76 79 72
9 OECD_CROSS 0 20 10 20 INT_S12_LAG 66 52 95 80

10 BLG_DAILY_RETURN 14 0 10 24 GHG_S12_LAG 95 84 60 49
11 CBF_GHG 15 0 24 9 ISS_E 80 67 88 54
12 BLG_FCF 0 0 15 23 CBF_GHG 78 60 80 68
13 BLG_LT_INV 0 0 17 19 BLG_FCF 66 63 78 78
14 BLG_INSTI_SHARE 0 16 0 17 FS_PE 66 75 75 68
15 BLG_RD_EXP 21 0 8 0 BLG_SHARE_OUT 63 81 63 72

Table 12: Lasso survival rate. We report the percentage of times that a given variable survives LASSO
selection (see Equation (2)). The rank of the variable is determined by the average of the the four columns.
Fixed effects are not included in the model.
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6.5 Characteristics of decarbonizing firms intensities
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Figure 9: Characteristics of (intensity) decarbonizing firms. We plot the absolute values of
the t-statistics of the tests in differences in means between characteristics with high versus
low ∆INT.
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6.6 Large errors from extrapolation
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Figure 10: Large errors from extrapolation. We show the dynamics of log emissions for a
sample of firms which have experience sharp breaks in 2022. The first six years are shown in
grey and the last point is the extrapolation. The realized value for 2022 is shown in red.
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